Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Obes Res Clin Pract ; 18(2): 81-87, 2024.
Article in English | MEDLINE | ID: mdl-38582736

ABSTRACT

The BMI predicts mortality and cardiovascular disease (CVD) in the general population, while in patients with end-stage chronic kidney disease (CKD) a high BMI is associated with improved survival, a phenomenon referred to as the "obesity paradox". While BMI is easy to determine and helps to categorize patients, it does not differentiate between fat tissue, lean tissue and bone mass. As the BMI may be altered in CKD, e.g. by muscle wasting, we determined in this meta-analysis (i) the association of mortality with fat tissue quantity in CKD and (ii) the association of mortality with abdominal obesity (as measured by waist circumference (WC) or waist-to-hip ratio (WHR)) in CKD. We systematically reviewed databases for prospective or retrospective cohort studies. In eleven studies with 23,523 patients the association between mortality and high fat tissue quantity in CKD was calculated. The pooled hazard ratio (HR) for this association in the CKD group in the dialysis group 0.91 (CI 0.84- 0.98, p = 0.01) which is comparable to the HR for the association with BMI. The HR in patients without dialysis was 0.7 (95% CI 0.53- 0.93, p = 0.01), suggesting a better risk prediction of high fat tissue content with mortality as compared to higher BMI with mortality in patients with CKD without dialysis. Importantly, both BMI and fat tissue quantity in CKD are described by the "obesity paradox": the higher the fat tissue content or BMI, the lower the mortality risk. In thirteen studies with 55,175 patients the association between mortality and high WC or WHR in CKD (with or without dialysis) was calculated. We observed, that the HR in the WHR group was 1.31 (CI 1.08-1.58, p = 0.007), whereas the overall hazard ratio of both groups was 1.09 (CI 1.01-1.18, p = 0.03), indicating that a higher abdominal obesity as measured by WHR is associated with higher mortality in CKD. Our analysis suggests gender-specific differences, which need larger study numbers for validation. This meta-analysis confirms the obesity paradox in CKD using fat tissue quantity as measure and further shows that using abdominal obesity measurements in the routine in obese CKD patients might allow better risk assessment than using BMI or fat tissue quantity. Comparable to the overall population, here, the higher the WHR, the higher the mortality risk.


Subject(s)
Body Mass Index , Renal Insufficiency, Chronic , Waist Circumference , Waist-Hip Ratio , Humans , Adipose Tissue , Cardiovascular Diseases/mortality , Cardiovascular Diseases/etiology , Obesity/complications , Obesity/physiopathology , Obesity/mortality , Obesity, Abdominal/complications , Obesity, Abdominal/mortality , Renal Dialysis , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/mortality , Renal Insufficiency, Chronic/therapy , Risk Factors
2.
Viruses ; 16(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38543707

ABSTRACT

BACKGROUND: Viral meningitis/encephalitis (ME) is a rare but potentially harmful disease. The prompt identification of the respective virus is important to guide not only treatment but also potential public health countermeasures. However, in about 40% of cases, no virus is identified despite an extensive diagnostic workup. The aim of the present study was to analyze demographic, seasonal, and routine cerebrospinal fluid (CSF) parameters in cases of viral ME and assess their utility for the prediction of the causative virus. METHODS: Demographic data, season, and routine CSF parameters (total leucocytes, CSF cell differentiation, age-adjusted CSF/serum albumin ratio, and total immunoglobulin ratios) were retrospectively assessed in cases of viral ME. RESULTS: In total, 156 cases of acute viral ME (74 female, median age 40.0 years) were treated at a tertiary-care hospital in Germany. Specific viral infections were detected in 93 (59.6%) cases. Of these, 14 (9.0%) cases were caused by herpes simplex virus (HSV), 36 (23.1%) by varicella-zoster virus (VZV), 27 (17.3%) by enteroviruses, 9 (5.8%) by West Nile virus (WNV), and 7 (4.5%) by other specific viruses. Additionally, 64 (41.0%) cases of ME of unknown viral etiology were diagnosed. Cases of WNV ME were older, predominantly male, showed a severe disruption of the blood-CSF-barrier, a high proportion of neutrophils in CSF, and an intrathecal total immunoglobulin M synthesis in the first CSF sample. In a multinominal logistic regression analysis, the accuracy of these CSF parameters together with age and seasonality was best for the prediction of WNV (87.5%), followed by unknown viral etiology (66.7%), VZV (61.8%), and enteroviruses (51.9%). CONCLUSIONS: Cases with WNV ME showed a specific pattern of routine CSF parameters and demographic data that allowed for their identification with good accuracy. These findings might help to guide the diagnostic workup in cases with viral ME, in particular allowing the timely identification of cases with ME due to WNV.


Subject(s)
Encephalitis, Viral , Enterovirus Infections , Meningitis, Viral , Viruses , West Nile Fever , West Nile virus , Male , Humans , Female , Adult , Retrospective Studies , Antibodies, Viral , West Nile Fever/diagnosis , Meningitis, Viral/diagnosis , Herpesvirus 3, Human
3.
Nutrition ; 120: 112327, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38341908

ABSTRACT

OBJECTIVES: Body composition on computed tomography can predict prognosis in patients with COVID-19. The reported data are based on small retrospective studies. The aim of the present study was to analyze the prognostic relevance of skeletal muscle parameter derived from chest computed tomography for prediction of 30-d mortality in patients with COVID-19 in a multicenter setting. METHODS: The clinical databases of three centers were screened for patients with COVID-19 between 2020 and 2022. Overall, 447 patients (142 female; 31.7%) were included into the study. The mean age at the time of computed tomography acquisition was 63.8 ± 14.7 y and median age was 65 y. Skeletal muscle area and skeletal muscle density were defined on level T12 of the chest. RESULTS: Overall, 118 patients (26.3%) died within the 30-d observation period. Of the patient sample, 255 patients (57.0%) were admitted to an intensive care unit and 122 patients needed mechanical ventilation (27.3%). The mean skeletal muscle area of all patients was 96.1 ± 27.2 cm² (range = 23.2-200.7 cm²). For skeletal muscle density, the mean was 24.3 ± 11.1 Hounsfield units (range = -5.6 to 55.8 Hounsfield units). In survivors, the mean skeletal muscle density was higher compared with the lethal cases (mean 25.8 ± 11.2 versus 20.1 ± 9.6; P < 0.0001). Presence of myosteatosis was independently associated with 30-d mortality: odds ratio = 2.72 (95% CI, 1.71-4.32); P = 0.0001. CONCLUSIONS: Myosteatosis is strongly associated with 30-d mortality in patients COVID-19. Patients with COVID-19 with myosteatosis should be considered a risk group.


Subject(s)
COVID-19 , Sarcopenia , Aged , Female , Humans , Body Composition , COVID-19/complications , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Retrospective Studies , Risk Factors , Sarcopenia/complications , Sarcopenia/diagnostic imaging , Sarcopenia/pathology , Male , Middle Aged
4.
Kidney Int ; 105(1): 65-83, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37774921

ABSTRACT

Glomerular-tubular crosstalk within the kidney has been proposed, but the paracrine signals enabling this remain largely unknown. The cold-shock protein Y-box binding protein 1 (YBX1) is known to regulate inflammation and kidney diseases but its role in podocytes remains undetermined. Therefore, we analyzed mice with podocyte specific Ybx1 deletion (Ybx1ΔPod). Albuminuria was increased in unchallenged Ybx1ΔPod mice, which surprisingly was associated with reduced glomerular, but enhanced tubular damage. Tubular toll-like receptor 4 (TLR4) expression, node-like receptor protein 3 (NLRP3) inflammasome activation and kidney inflammatory cell infiltrates were all increased in Ybx1ΔPod mice. In vitro, extracellular YBX1 inhibited NLRP3 inflammasome activation in tubular cells. Co-immunoprecipitation, immunohistochemical analyses, microscale cell-free thermophoresis assays, and blunting of the YBX1-mediated TLR4-inhibition by a unique YBX1-derived decapeptide suggests a direct interaction of YBX1 and TLR4. Since YBX1 can be secreted upon post-translational acetylation, we hypothesized that YBX1 secreted from podocytes can inhibit TLR4 signaling in tubular cells. Indeed, mice expressing a non-secreted YBX1 variant specifically in podocytes (Ybx1PodK2A mice) phenocopied Ybx1ΔPod mice, demonstrating a tubular-protective effect of YBX1 secreted from podocytes. Lipopolysaccharide-induced tubular injury was aggravated in Ybx1ΔPod and Ybx1PodK2A mice, indicating a pathophysiological relevance of this glomerular-tubular crosstalk. Thus, our data show that YBX1 is physiologically secreted from podocytes, thereby negatively modulating sterile inflammation in the tubular compartment, apparently by binding to and inhibiting tubular TLR4 signaling. Hence, we have uncovered an YBX1-dependent molecular mechanism of glomerular-tubular crosstalk.


Subject(s)
Kidney Diseases , Podocytes , Mice , Animals , Inflammasomes/metabolism , Toll-Like Receptor 4/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Cold-Shock Response , Kidney/metabolism , Podocytes/metabolism , Kidney Diseases/metabolism , Inflammation/metabolism
5.
Immunity ; 57(1): 68-85.e11, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38141610

ABSTRACT

Tissue factor (TF), which is a member of the cytokine receptor family, promotes coagulation and coagulation-dependent inflammation. TF also exerts protective effects through unknown mechanisms. Here, we showed that TF bound to interferon-α receptor 1 (IFNAR1) and antagonized its signaling, preventing spontaneous sterile inflammation and maintaining immune homeostasis. Structural modeling and direct binding studies revealed binding of the TF C-terminal fibronectin III domain to IFNAR1, which restricted the expression of interferon-stimulated genes (ISGs). Podocyte-specific loss of TF in mice (PodΔF3) resulted in sterile renal inflammation, characterized by JAK/STAT signaling, proinflammatory cytokine expression, disrupted immune homeostasis, and glomerulopathy. Inhibiting IFNAR1 signaling or loss of Ifnar1 expression in podocytes attenuated these effects in PodΔF3 mice. As a heteromer, TF and IFNAR1 were both inactive, while dissociation of the TF-IFNAR1 heteromer promoted TF activity and IFNAR1 signaling. These data suggest that the TF-IFNAR1 heteromer is a molecular switch that controls thrombo-inflammation.


Subject(s)
Signal Transduction , Thromboplastin , Animals , Mice , Inflammation , Interferon-alpha , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , Thromboplastin/genetics
6.
Transl Stroke Res ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37945800

ABSTRACT

An impaired integrity of vascular elements and the extracellular matrix (ECM) has been discussed to play a critical role in the pathophysiology of spontaneous cervical artery dissection (sCAD). This study aimed to explore the temporal course of circulating elastin, collagen type I, and collagen type III in patients with sCAD and evaluated their eligibility as diagnostic biomarkers. Patients with sCAD were prospectively enrolled in four German stroke centers. Blood samples were collected at baseline (acute phase), at day 10 ± 3 (subacute phase), and after 6 ± 1 months (chronic phase). Patients with acute ischemic stroke not related to sCAD, healthy probands, and patients undergoing thromboendarterectomy of the carotid artery served as control groups. Serum levels of elastin and collagen types I and III were determined by ELISAs. Fifty-seven patients with sCAD were enrolled. Compared to all three control groups, patients with sCAD had significantly lower levels of elastin and collagen type III at baseline and after 6 months. Compared to healthy probands, patients with sCAD showed similar collagen type I levels at baseline and in the subacute phase, but significantly increased levels after 6 months. As serum levels of elastin, collagen types I and III were not elevated in the acute phase, they do not appear eligible as biomarkers for the diagnosis of sCAD. Persisting low serum levels of elastin and collagen type III towards the chronic phase of sCAD strengthens the hypothesis of a subtle, in most cases clinically inapparent affection of the ECM in patients with sCAD.

8.
Clin Res Cardiol ; 112(8): 1096-1107, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37087503

ABSTRACT

BACKGROUND: The present study aimed to develop a simple dosing score when starting the cardiac glycoside digitoxin in heart failure with reduced ejection fraction (HFrEF) employing first data from the randomized, double-blinded DIGIT-HF trial. METHODS AND RESULTS: In DIGIT-HF, digitoxin was started with a dose of 0.07 mg once daily (o.d.) in all patients. For score derivation, 317 patients were analyzed who had been randomized to digitoxin. In these patients, after scheduled determination of serum levels at study week 6, the digitoxin dose had remained unchanged or had been reduced to 0.05 mg o.d. (97% of patients) to achieve serum concentrations within a predefined range (10.5-23.6 nmol/l). In logistic regression analyses, sex, age, body mass index (BMI), and estimated glomerular filtration rate (eGFR) were associated with need for dose reduction and, therefore, selected for further developing the dosing score. Optimal cut-points were derived from ROC curve analyses. Finally, female sex, age ≥ 75 years, eGFR < 50 ml/min/1.73 m2, and BMI < 27 kg/m2 each were assigned one point for the digitoxin dosing score. A score of ≥ 1 indicated the need for dose reduction with sensitivity/specificity of 81.6%/49.7%, respectively. Accuracy was confirmed in a validation data set including 64 patients randomized to digitoxin yielding sensitivity/specificity of 87.5%/37.5%, respectively. CONCLUSION: In patients with HFrEF, treatment with digitoxin should be started at 0.05 mg o.d. in subjects with either female sex, eGFR < 50 ml/min/1.73m2, BMI < 27 kg/m2, or age ≥ 75 years. In any other patient, digitoxin may be safely started at 0.07 mg o.d.


Subject(s)
Heart Failure , Humans , Female , Aged , Heart Failure/diagnosis , Heart Failure/drug therapy , Digitoxin/adverse effects , Stroke Volume , ROC Curve , Sensitivity and Specificity
9.
Nutrients ; 14(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35956315

ABSTRACT

Diabetic kidney disease (DKD) is an emerging pandemic, paralleling the worldwide increase in obesity and diabetes mellitus. DKD is now the most frequent cause of end-stage renal disease and is associated with an excessive risk of cardiovascular morbidity and mortality. DKD is a consequence of systemic endothelial dysfunction. The endothelial-dependent cytoprotective coagulation protease activated protein C (aPC) ameliorates glomerular damage in DKD, in part by reducing mitochondrial ROS generation in glomerular cells. Whether aPC reduces mitochondrial ROS generation in the tubular compartment remains unknown. Here, we conducted expression profiling of kidneys in diabetic mice (wild-type and mice with increased plasma levels of aPC, APChigh mice). The top induced pathways were related to metabolism and in particular to oxidoreductase activity. In tubular cells, aPC maintained the expression of genes related to the electron transport chain, PGC1-α expression, and mitochondrial mass. These effects were associated with reduced mitochondrial ROS generation. Likewise, NLRP3 inflammasome activation and sterile inflammation, which are known to be linked to excess ROS generation in DKD, were reduced in diabetic APChigh mice. Thus, aPC reduces mitochondrial ROS generation in tubular cells and dampens the associated renal sterile inflammation. These studies support approaches harnessing the cytoprotective effects of aPC in DKD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/etiology , Inflammation/complications , Kidney/metabolism , Mice , Protein C , Reactive Oxygen Species/metabolism
10.
Nat Commun ; 13(1): 5062, 2022 08 27.
Article in English | MEDLINE | ID: mdl-36030260

ABSTRACT

A major obstacle in diabetes is the metabolic or hyperglycemic memory, which lacks specific therapies. Here we show that glucose-mediated changes in gene expression largely persist in diabetic kidney disease (DKD) despite reversing hyperglycemia. The senescence-associated cyclin-dependent kinase inhibitor p21 (Cdkn1a) was the top hit among genes persistently induced by hyperglycemia and was associated with induction of the p53-p21 pathway. Persistent p21 induction was confirmed in various animal models, human samples and in vitro models. Tubular and urinary p21-levels were associated with DKD severity and remained elevated despite improved blood glucose levels in humans. Mechanistically, sustained tubular p21 expression in DKD is linked to demethylation of its promoter and reduced DNMT1 expression. Two disease resolving agents, protease activated protein C (3K3A-aPC) and parmodulin-2, reversed sustained tubular p21 expression, tubular senescence, and DKD. Thus, p21-dependent tubular senescence is a pathway contributing to the hyperglycemic memory, which can be therapeutically targeted.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21 , Diabetes Mellitus , Diabetic Nephropathies , Hyperglycemia , Animals , Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p21/genetics , Diabetes Mellitus/pathology , Diabetic Nephropathies/pathology , Humans , Hyperglycemia/pathology , Kidney
11.
Nutrients ; 14(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35893913

ABSTRACT

It is controversial whether lifestyle-induced weight loss (LIWL) intervention provides long-term benefit. Here, we investigated whether the degree of weight loss (WL) in a controlled LIWL intervention study determined the risk of prediabetes and recurrence of metabolic syndrome (MetS) during a 5-year follow-up. Following LIWL, 58 male participants (age 45−55 years) were divided into four quartiles based on initial WL: Q1 (WL 0−8.1%, n = 15), Q2 (WL 8.1−12.8%, n = 14), Q3 (WL 12.8−16.0%, n = 14), and Q4 (WL 16.0−27.5%, n = 15). We analyzed changes in BMI, HDL cholesterol, triglycerides (TGs), blood pressure, and fasting plasma glucose (FPG) at annual follow-up visits. With a weight gain after LIWL between 1.2 (Q2) and 2.5 kg/year (Q4), the reduction in BMI was maintained for 4 (Q2, p = 0.03) or 5 (Q3, p = 0.03; Q4, p < 0.01) years, respectively, and an increase in FPG levels above baseline values was prevented in Q2−Q4. Accordingly, there was no increase in prediabetes incidence after LIWL in participants in Q2 (up to 2 years), Q3 and Q4 (up to 5 years). A sustained reduction in MetS was maintained in Q4 during the 5-year follow-up. The present data indicate that a greater initial LIWL reduces the risk of prediabetes and recurrence of MetS for up to 5 years.


Subject(s)
Metabolic Syndrome , Prediabetic State , Follow-Up Studies , Humans , Life Style , Male , Metabolic Syndrome/epidemiology , Middle Aged , Prediabetic State/epidemiology , Weight Loss/physiology
12.
Kidney Int ; 102(4): 766-779, 2022 10.
Article in English | MEDLINE | ID: mdl-35779608

ABSTRACT

Efficient therapies for diabetic kidney disease (DKD), now the leading cause of kidney failure, are lacking. One hallmark of DKD is sterile inflammation (inflammation in absence of microorganisms), but the underlying molecular mechanisms remain poorly understood. The NLRP3 inflammasome (innate immune system receptors and sensors regulating activation of caspase-1) is a mechanism of sterile inflammation known to be activated by metabolic stimuli and reactive metabolites associated with DKD, including inflammasome activation in podocytes. However, whether NLRP3 inflammasome activation in podocytes contributes to sterile inflammation and glomerular damage in DKD remains unknown. Here, we found that kidney damage, as reflected by increased albuminuria, glomerular mesangial expansion and glomerular basement membrane thickness was aggravated in hyperglycemic mice with podocyte-specific expression of an Nlrp3 gain-of-function mutant (Nlrp3A350V). In contrast, hyperglycemic mice with podocyte-specific Nlrp3 or Caspase-1 deficiency showed protection against DKD. Intriguingly, podocyte-specific Nlrp3 deficiency was fully protective, while podocyte-specific caspase-1 deficiency was only partially protective. Podocyte-specific Nlrp3, but not caspase-1 deficiency, maintained glomerular autophagy in hyperglycemic mice, suggesting that podocyte Nlrp3 exerts both canonical and non-canonical effects. Thus, podocyte NLRP3 inflammasome activation is both sufficient and required for DKD and supports the concept that podocytes exert some immune cell-like functions. Hence, as podocyte NLRP3 exerts non-canonical and canonical effects, targeting NLRP3 may be a promising therapeutic approach in DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Podocytes , Animals , Diabetes Mellitus/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Mice , Mice, Obese , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Podocytes/metabolism
13.
Nutrients ; 14(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35889923

ABSTRACT

Diabetes mellitus is a metabolic disease largely due to lifestyle and nutritional imbalance, resulting in insulin resistance, hyperglycemia and vascular complications. Diabetic kidney disease (DKD) is a major cause of end-stage renal failure contributing to morbidity and mortality worldwide. Therapeutic options to prevent or reverse DKD progression are limited. Endothelial and glomerular filtration barrier (GFB) dysfunction and sterile inflammation are associated with DKD. Neutrophil extracellular traps (NETs), originally identified as an innate immune mechanism to combat infection, have been implicated in sterile inflammatory responses in non-communicable diseases. However, the contribution of NETs in DKD remains unknown. Here, we show that biomarkers of NETs are increased in diabetic mice and diabetic patients and that these changes correlate with DKD severity. Mechanistically, NETs promote NLRP3 inflammasome activation and glomerular endothelial dysfunction under high glucose stress in vitro and in vivo. Inhibition of NETs (PAD4 inhibitor) ameliorate endothelial dysfunction and renal injury in DKD. Taken together, NET-induced sterile inflammation promotes diabetes-associated endothelial dysfunction, identifying a new pathomechanism contributing to DKD. Inhibition of NETs may be a promising therapeutic strategy in DKD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Extracellular Traps , Animals , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/drug therapy , Extracellular Traps/metabolism , Inflammasomes/metabolism , Inflammation/complications , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
14.
Int J Mol Sci ; 22(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34948003

ABSTRACT

Plant sterols (PSs) cannot be synthesized in mammals and are exclusively diet-derived. PSs cross the blood-brain barrier and may have anti-neuroinflammatory effects. Obesity is linked to lower intestinal uptake and blood levels of PSs, but its effects in terms of neuroinflammation-if any-remain unknown. We investigated the effect of high-fat diet-induced obesity on PSs in the brain and the effects of the PSs campesterol and ß-sitosterol on in vitro microglia activation. Sterols (cholesterol, precursors, PSs) and polyunsaturated fatty acid-derived lipid mediators were measured in the food, blood, liver and brain of C57BL/6J mice. Under a PSs-poor high-fat diet, PSs levels decreased in the blood, liver and brain (>50%). This effect was reversible after 2 weeks upon changing back to a chow diet. Inflammatory thromboxane B2 and prostaglandin D2 were inversely correlated to campesterol and ß-sitosterol levels in all brain regions. PSs content was determined post mortem in human cortex samples as well. In vitro, PSs accumulate in lipid rafts isolated from SIM-A9 microglia cell membranes. In summary, PSs levels in the blood, liver and brain were associated directly with PSs food content and inversely with BMI. PSs dampen pro-inflammatory lipid mediators in the brain. The identification of PSs in the human cortex in comparable concentration ranges implies the relevance of our findings for humans.


Subject(s)
Diet, High-Fat/adverse effects , Fatty Acids, Unsaturated/analysis , Lipidomics/methods , Microglia/cytology , Neuroinflammatory Diseases/metabolism , Obesity/metabolism , Phytosterols/analysis , Animal Feed , Animals , Cells, Cultured , Cholesterol/analogs & derivatives , Cholesterol/analysis , Chromatography, Liquid , Disease Models, Animal , Humans , Liver/chemistry , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Neuroinflammatory Diseases/chemically induced , Obesity/chemically induced , Phytosterols/blood , Sitosterols/analysis , Tandem Mass Spectrometry
16.
Metabolites ; 11(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34436467

ABSTRACT

Bone-derived osteocalcin has been suggested to be a metabolic regulator. To scrutinize the relation between osteocalcin and peripheral insulin sensitivity, we analyzed changes in serum osteocalcin relative to changes in insulin sensitivity, low-grade inflammation, and bone mineral density following lifestyle-induced weight loss in individuals with metabolic syndrome (MetS). Participants with MetS were randomized to a weight loss program or to a control group. Before and after the 6-month intervention period, clinical and laboratory parameters and serum osteocalcin levels were determined. Changes in body composition were analyzed by dual-energy X-ray absorptiometry (DXA). In participants of the intervention group, weight loss resulted in improved insulin sensitivity and amelioration of inflammation. Increased serum levels of osteocalcin correlated inversely with BMI (r = -0.63; p< 0.001), total fat mass (r = -0.58, p < 0.001), total lean mass (r = -0.45, p < 0.001), C-reactive protein (CRP) (r = -0.37; p < 0.01), insulin (r = -0.4; p < 0.001), leptin (r = -0.53; p < 0.001), triglycerides (r = -0.42; p < 0.001), and alanine aminotransferase (ALAT) (r = -0.52; p < 0.001). Regression analysis revealed that osteocalcin was independently associated with changes in CRP but not with changes in insulin concentration, fat mass, or bone mineral density, suggesting that weight loss-induced higher serum osteocalcin is primarily associated with reduced inflammation.

17.
J Clin Oncol ; 38(30): 3555-3564, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32840417

ABSTRACT

PURPOSE: Doxorubicin is a standard of care in patients with advanced, inoperable soft tissue sarcoma (STS). We tested whether pazopanib has efficacy comparable to that of doxorubicin in elderly patients with STS and offers superior tolerability for hematologic toxicity. PATIENTS AND METHODS: Patients age 60 years or older without previous systemic treatment for progressive advanced or metastatic STS who had Eastern Cooperative Oncology Group performance status of 0 to 2 and adequate organ function were included. Treatment consisted of pazopanib 800 mg once per day or doxorubicin 75 mg/m2 once every 3 weeks (≤ 6 cycles) after being randomly assigned in a 2:1 ratio. Noninferiority was assumed for progression-free survival (PFS), if the upper limit of the 95% CI for the hazard ratio (HR) was less than 1.8. Neutropenia and febrile neutropenia were key secondary end points. The European Organisation for Research and Treatment of Cancer (30-item) Quality of Life Questionnaire and geriatric assessment were used to measure patient-reported outcomes. Cox regression analysis and Kaplan-Meier curves were used for analysis. RESULTS: Pazopanib and doxorubicin were given to 81 and 39 patients, respectively. The median age was 71 years (range, 60-88 years). PFS was noninferior (HR, 1.00; 95% CI, 0.65 to 1.53) and the incidence of grade 4 neutropenia and febrile neutropenia favored pazopanib. Objective response rates for pazopanib and doxorubicin were 12.3% and 15.4%, respectively. Overall survival did not differ significantly between arms (HR, 1.08; 95% CI, 0.68 to 1.72; P = .735). Geriatric assessment revealed 2 or more comorbidities in 15.8% of the patients and impairment of activities of daily living in 28.3% of patients. CONCLUSION: Pazopanib was noninferior to doxorubicin, rendering pazopanib a putative therapeutic option in the first-line treatment of STS in patients age 60 years or older. The distinct adverse event profile may be used to counsel patients and tailor therapy to individual needs.


Subject(s)
Doxorubicin/administration & dosage , Pyrimidines/administration & dosage , Sarcoma/drug therapy , Sulfonamides/administration & dosage , Age Factors , Aged , Aged, 80 and over , Angiogenesis Inhibitors/administration & dosage , Antibiotics, Antineoplastic/administration & dosage , Chemotherapy-Induced Febrile Neutropenia/etiology , Doxorubicin/adverse effects , Drug Administration Schedule , Female , Humans , Indazoles , Male , Middle Aged , Neutropenia/chemically induced , Patient Reported Outcome Measures , Progression-Free Survival , Pyrimidines/adverse effects , Quality of Life , Sulfonamides/adverse effects
18.
Int J Mol Sci ; 21(13)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32645954

ABSTRACT

Tissue-resident macrophages are key players in inflammatory processes, and their activation and functionality are crucial in health and disease. Numerous diseases are associated with alterations in homeostasis or dysregulation of the innate immune system, including allergic reactions, autoimmune diseases, and cancer. Macrophages are a prime target for drug discovery due to their major regulatory role in health and disease. Currently, the main sources of macrophages used for therapeutic compound screening are primary cells isolated from blood or tissue or immortalized or neoplastic cell lines (e.g., THP-1). Here, we describe an improved method to employ induced pluripotent stem cells (iPSCs) for the high-yield, large-scale production of cells resembling tissue-resident macrophages. For this, iPSC-derived macrophage-like cells are thoroughly characterized to confirm their cell identity and thus their suitability for drug screening purposes. These iPSC-derived macrophages show strong cellular identity with primary macrophages and recapitulate key functional characteristics, including cytokine release, phagocytosis, and chemotaxis. Furthermore, we demonstrate that genetic modifications can be readily introduced at the macrophage-like progenitor stage in order to interrogate drug target-relevant pathways. In summary, this novel method overcomes previous shortcomings with primary and leukemic cells and facilitates large-scale production of genetically modified iPSC-derived macrophages for drug screening applications.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Macrophages/cytology , Cell Culture Techniques/methods , Cell Line , Chemotaxis/physiology , Cytokines/metabolism , Drug Evaluation, Preclinical/methods , Humans , Induced Pluripotent Stem Cells/metabolism , Macrophages/metabolism , Phagocytosis/physiology
19.
J Am Soc Nephrol ; 31(8): 1762-1780, 2020 08.
Article in English | MEDLINE | ID: mdl-32709711

ABSTRACT

BACKGROUND: Diabetic nephropathy (dNP), now the leading cause of ESKD, lacks efficient therapies. Coagulation protease-dependent signaling modulates dNP, in part via the G protein-coupled, protease-activated receptors (PARs). Specifically, the cytoprotective protease-activated protein C (aPC) protects from dNP, but the mechanisms are not clear. METHODS: A combination of in vitro approaches and mouse models evaluated the role of aPC-integrin interaction and related signaling in dNP. RESULTS: The zymogen protein C and aPC bind to podocyte integrin-ß3, a subunit of integrin-αvß3. Deficiency of this integrin impairs thrombin-mediated generation of aPC on podocytes. The interaction of aPC with integrin-αvß3 induces transient binding of integrin-ß3 with G α13 and controls PAR-dependent RhoA signaling in podocytes. Binding of aPC to integrin-ß3via its RGD sequence is required for the temporal restriction of RhoA signaling in podocytes. In podocytes lacking integrin-ß3, aPC induces sustained RhoA activation, mimicking the effect of thrombin. In vivo, overexpression of wild-type aPC suppresses pathologic renal RhoA activation and protects against dNP. Disrupting the aPC-integrin-ß3 interaction by specifically deleting podocyte integrin-ß3 or by abolishing aPC's integrin-binding RGD sequence enhances RhoA signaling in mice with high aPC levels and abolishes aPC's nephroprotective effect. Pharmacologic inhibition of PAR1, the pivotal thrombin receptor, restricts RhoA activation and nephroprotects RGE-aPChigh and wild-type mice.Conclusions aPC-integrin-αvß3 acts as a rheostat, controlling PAR1-dependent RhoA activation in podocytes in diabetic nephropathy. These results identify integrin-αvß3 as an essential coreceptor for aPC that is required for nephroprotective aPC-PAR signaling in dNP.


Subject(s)
Diabetic Nephropathies/prevention & control , Integrin beta3/physiology , Podocytes/physiology , Protein C/physiology , rhoA GTP-Binding Protein/physiology , Animals , Cytoprotection , Endothelial Protein C Receptor/physiology , GTP-Binding Protein alpha Subunits, G12-G13/physiology , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Receptor, PAR-1/physiology
20.
J Neuroinflammation ; 16(1): 94, 2019 May 08.
Article in English | MEDLINE | ID: mdl-31068198

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by motor and non-motor symptoms. There is increasing evidence that PD pathology is accompanied by an inflammatory response. This is highly relevant for understanding disease progression and the development of novel neuroprotective therapies. OBJECTIVE: Assessing potential dysregulation of a panel of inflammatory mediators in the peripheral blood mononuclear cells (PBMCs) and plasma of PD patients and in the context of clinical outcome metrics. METHODS: We performed a screening of selected cell-surface chemokine receptors and adhesion molecules in PBMCs from PD patients and age-matched healthy controls in a flow cytometry-based assay. ELISA was used to quantify VCAM1 levels in the plasma of PD patients. Lymphocytic chemotactic ability was assessed using a modified Boyden chamber assay. RESULTS: VLA4 expression was significantly downregulated on CD3+ T cells, CD56+ NK cells, and CD3+/CD56+ NK-T cells from PD patients; further, an increase of the soluble VLA4 ligand VCAM1 in patient plasma was noted. sVCAM1 in PD patients was even higher than reported for patients with multiple sclerosis, neuromyelitis optica, and rheumatoid arthritis. sVCAM1 levels correlated with the disease stage (Hoehn and Yahr scale) and motor impairment. Chemoattraction with SDF-1α revealed impaired motility of lymphocytes from PD patients relative to controls. CONCLUSION: Our data provides evidence for a functional dysregulation of the sVCAM1-VLA4 axis in PD. Further studies evaluating the therapeutic potential of this axis are warranted.


Subject(s)
Parkinson Disease/blood , Vascular Cell Adhesion Molecule-1/blood , Aged , Biomarkers/blood , Female , Humans , Integrin alpha4beta1/blood , Leukocytes, Mononuclear/metabolism , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...